
Dr Louise Brown

Computer Engineering
and Mechatronics

MMME3085

Introduction

▪Today we will cover:

▪Chapter 9 – Loops

▪Chapter 10 – Using functions

▪Chapter 11 – Arrays

▪Chapter 12 – Variables and memory allocation

Start recording!!

Loops – Repeating Things

Chapter 9

Looping….

Often, when coding, we need a
block of code to be repeated
multiple times.

In C (and indeed all programming
languages) there are different
ways/types of loops however they
all (basically) allow the following to
be implemented

Test
Condition

Code to be
executed

TRUE

False

Looping

In C we have three types of loops at our disposal, which we use is dependent
on what we need to achieve in our code. They are

▪ while : This form of loop repeats statement(s) while the condition
remains true. The test is made BEFORE executing the ‘loop code’

▪ do … while : This form of loop repeats statement(s) while the condition
remains true. The test is made AFTER executing the ‘loop code’

▪ for : This style of loop repeats statement(s) a set number of times –
with us being able to identify the number of times the loop has run (and
make use of this value)

Pictorially: while and do…while

Test
Condition

Code to be
executed

TRUE

False

Test
Condition

Code to be
executed

TRUE

False

while
Condition is tested before the code is executed

(so it may NOT be executed)

do … while
Condition is tested after the code is executed

(so code will execute at least once)

While and do…while syntax

while

x = getch();

while (x != ‘q’)

{

 printf (“Press a key\n”);

 x = getch();

}

do…while

do
{

 printf (“Press a key\n”);
 x = getch()

} while (x != ‘q’);

Some examples in code

We will look at how we can use these two
types of loops in code

LC9\while_example_version_1.c , LC9\while_example_version_2.c , LC9\do_while_example.c

for loops: For repeating a number of times

A for loop is a style of loop where we ‘build in’ the conditions at the point
where we define the loop.

They are used when we want a loop to count over a range of numbers
(e.g. from 1 to 10)

We need to provide three things:

▪ The starting value

▪A condition statement

▪How we will be changing the value each time the loop completes

for loops

Consider the case when we wish to count over the range 0 to
100 inclusive using a variable i to hold the count value

i.e. we want values of i to be 0,1,2,3,…100

The start value is easy: i = 0

for loops – Test Condition

The test condition is one that needs to be non-zero (true) over
the range we wish to count, so either of:

i < 101

i <= 100

for loops - Incrementing

We wish to count up in 1s, so the change we make each time
to i can be written as either:

i = i + 1

i++

for loops - Format

Putting this into the correct format for C we get the options below

for (i = 0 ; i < 101 ; i++)

for (i = 0 ; i <= 100 ; i++)

for (i = 0 ; i < 101 ; i = i + 1)

for (i = 0 ; i <= 100 ; i = i + 1)

Note:
▪ A for statement acts on the next line of code so, if we wish to have multiple lines ‘controlled’ by

the for loop we need to put the code in {}

▪ You can, if you wish, use {} for a single statement

Note
DO NOT put a semicolon here!

If you do this will ‘be’ the line of
code controlled by the loop.

for loop: Some examples in code

We will look at how we use for loops in practice

LC9\for_loops.c

Function Programming (Part 1)

Chapter 10

Functions: The building blocks of code (1)

To date, we have looked at developing all our code inside main()

For short programs (even some long ones!) this is fine however it does lead to
problems

▪ Only one person can work on the code at any one time

▪ Each time we write code, the only way to reuse existing code is via copy &
paste

▪ We cannot validate components in the system

▪ So - we cannot test at a functional level, just a system level (BAD!)

Functions: The building blocks of code (2)

To date, we have looked at developing all our code inside main()

For short programs (even some long ones!) this is fine however it does lead to
problems

▪ Only one person can work on the code at any one time

▪ Each time we write code, the only way to reuse existing code is via copy &
paste

▪ We cannot validate components in the system

▪ So - we cannot test at a functional level, just a system level (BAD!)

The solution to this is to break our code up into functions

• These are ‘blocks’ of code to which, if required, we pass values and receive (if

appropriate) values back

• Each function can be separately validated against known criteria

• We can easily make use of functions in other programs knowing they perform as

expected

Functions (1)

All functions consist of three parts

▪ A return type

▪ This is any valid C variable type or void

▪ A Name

▪ You get to pick this – it cannot replicate an existing reserved word in C, must meet naming
restrictions and, ideally, should indicate what the function does

▪ An argument list

▪ The argument list MUST contain at least one valid C variable type or void+

▪ The format is: variable_type name_of_variable (comma separated, repeated as required)

▪ Multiple arguments are comma separated

Plus some code!

(+) void is the ‘C’ term for denoting nothing

Functions (2)

Or, to put it another way…

return_type name (arguments)

Any valid C type, or void

Something relevant to the

function helps !

Any valid C type, or void

Our analysis of the problem will allow us to determine

◦ The return type

◦ Number of (and type of) inputs to the function (the arguments)

Function declarations

Some possible examples (excluding the code) might be

▪ float CalculateArea (float Radius)

▪ float CalculateCylinderVolume (float Radius, float Length)

▪ int IsItComplex (float a, float b, float c)

As ever, you need to consider the type of variables types to pass/return

▪ which will have come from your design stage!

Function prototypes (1)

Write a prototype for functions which:

• Converts a temperature in degrees Fahrenheit to degrees
Celsius

• Inputs 3 integer numbers and returns the largest

Function prototypes (2)

Write a prototype for functions which:

• Converts a temperature in degrees Fahrenheit to degrees
Celsius

• Inputs 3 integer numbers and returns the largest

float ConvertDegFToC(float degreesF)

Function prototypes (3)

Write a prototype for functions which:

• Converts a temperature in degrees Fahrenheit to degrees
Celsius

• Inputs 3 integer numbers and returns the largest

float ConvertDegFToC(float degreesF)

int ReturnLargestInteger(int num1, int num2, int num3)

Functions: prototypes

We can place functions anywhere in our code (remembering it will start at main())

If we need to use a function before we have ‘written’ it (or it is elsewhere) we need

to make the compiler ‘aware’ of the function so it can check we use it correctly

To do this we put a description of the function at the top of our code (or into another

file which we include)

It takes the same form as the function definition, we simply pop a semicolon on the

end

The code does of course have to be written at that point!

In fact…

▪ You have already been making use of function prototypes, they are in stdio.h,

stdlib.h which we include in all out code

functions: Some examples in code

We will take a 1st look at functions in C

A quick reminder:

▪No matter where it is placed, program execution always begins with
the first statement in the function main()

LC10\simple_functions_1.c , LC10\simple_functions_2.c

void Functions

Note: Sometimes when we write a function we do not require a value back (ie

nothing returned).

▪ This type of function is referred to as a void function

The only difference is that the return type is void e.g.

▪ void DisplaySomeInformation (int a, int b, int c)

And the return returns no value

▪ return ;

Functions: A template

The function flow chart you have been provided with in the course book will enable

you to develop any function (you need to provide the actual code).

You may wish to refer to this when starting to develop your own functions.

Functions Flowchart

We have now

covered this

part of the

flowchart

Arrays

Chapter 11

Arrays (matrices to mathematicians!)

So far we have looked at creating individual variables in which we can
store values – looking to pick the correct type and using sensible names

So far, so good…

▪But what if we needed to store 1,000,000 values? If we tried to
create each variable independently the time to do this would be
wildly impractical

There is a solution!

▪We create an array of variables – this allows us to define a ‘matrix’
(1D, 2D etc.) into which we can store (and retrieve) values

Arrays: in practice (1)

We define an array of variables in a similar method to any other variable

 int c; // Define an integer c

The difference is for an array is we provide ‘dimensions’

 int x[10]; // Define x, a 1D array of integers of size 1x10

Things to note

• The size of the array is indicated using square brackets ‘[‘ & ‘]’

• The number in the brackets is the size of the array

A very, very important thing to note

• When referencing an array we start at 0 (zero), so for the above we have items

• x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9]

Arrays: in practice (2)

▪ We can have multidimensional arrays, we just use more [] terms, e.g.

int data[10][20];

float samples[2][10][5];

▪ The most commonly used ones are however 1D & 2D

▪ To set/get values we indicate the element we are interested in (much like

the item in a matrix)

data[5][5] = 2;

Y = data[6][6];

▪ Arrays are often used with for loops (for example to set all values)

int data[10][20];
for (i = 0 ; i < 10 ; i++)
{

for (j = 0 ; j < 20 ; j++)
{

data[i][j] = 0;
}

}

int data[10][20];
for (i = 0 ; i < 10 ; i++)

for (j = 0 ; j < 20 ;j++)
data[i][j] = 0;

Or, if you prefer the
{}

approach

Arrays: Some examples in code

▪We will look at how we use arrays in practice

LC11\loop_into_array.c

Variables: Part 2

Chapter 12

Variables in C/C++

Whenever we create variables in C/C++ (or any language) memory is
set aside to hold the values

Variables are created when functions begin

▪Remember main() is a function

▪When the function finishes (ie ‘return’ is executed’) the memory
released.

▪Provided we have done things correctly, when a program finishes
all the memory we started with is freed up

The ‘technical’ term for such variables are ‘Automatic Variables’

Variables & functions

You will have noticed that when we created functions we defined variables in two
places:

▪ The argument list – values were copied into these when the function was
called

▪ Within the function itself – we used these to allow the function to function

You may have noticed that the same variables were used in main() and the
functions()

How can this be done?

The answer to the last point is covered by what we refer to as SCOPE

Scope of Variables

▪ There are two types of acceptable variables

▪ Those defined within a function – we call these LOCAL variables

▪ Those defined as a function parameters – these are called FORMAL

parameters

▪ There is a third type (which I hate to mention)

▪ Global variables – we DO not use these(+), they are EVIL and the work of lazy

programmers!

(+) Apart from exceptional cases where the is no other alternative – which is not the

case in the C programming part of the module!

Memory Usage in C/C++ (1)

This is very important

▪Variables are accessible ONLY in the function in which they are
defined

You can define ‘global variables’ but this is very (very) poor
programming practice

▪We are NOT going to consider using them!

Memory Usage in C/C++ (2)

So considering a simple main() programme

int main(void)
{
 int age;
 char b;
 double percent, rate;

 age = 7;
 b = ‘J’;
 percent = 1.07;
 rate = percent + 1.0;

 return 0;
}

Memory Used to store

Memory Usage in C/C++ (3)

So considering a simple main() programme

int main(void)
{
 int age;
 char b;
 double percent, rate;

 age = 7;
 b = ‘J’;
 percent = 1.07;
 rate = percent + 1.0;

 return 0;
}

Memory

age

Used to store

Memory Usage in C/C++ (4)

So considering a simple main() programme

int main(void)
{
 int age;
 char b;
 double percent, rate;

 age = 7;
 b = ‘J’;
 percent = 1.07;
 rate = percent + 1.0;

 return 0;
}

Memory

b

age

Used to store

Memory Usage in C/C++ (5)

So considering a simple main() programme

int main(void)
{
 int age;
 char b;
 double percent, rate;

 age = 7;
 b = ‘J’;
 percent = 1.07;
 rate = percent + 1.0;

 return 0;
}

Memory

percent

b

age

Used to store

Memory Usage in C/C++ (6)

int main(void)
{
 int age;
 char b;
 double percent, rate;

 age = 7;
 b = ‘J’;
 percent = 1.07;
 rate = percent + 1.0;

 return 0;
}

Memory

percent

b

age

rate

Used to store

So considering a simple main() programme

Memory Usage in C/C++ (7)

int main(void)
{
 int age;
 char b;
 double percent, rate;

 age = 7;
 b = ‘J’;
 percent = 1.07;
 rate = percent + 1.0;

 return 0;
}

Memory

percent

b

age

rate

Used to store

7

So considering a simple main() programme

Memory Usage in C/C++ (8)

int main(void)
{
 int age;
 char b;
 double percent, rate;

 age = 7;
 b = ‘J’;
 percent = 1.07;
 rate = percent + 1.0;

 return 0;
}

Memory

percent

b

age

rate

Used to store

7

J

So considering a simple main() programme

Memory Usage in C/C++ (9)

int main(void)
{
 int age;
 char b;
 double percent, rate;

 age = 7;
 b = ‘J’;
 percent = 1.07;
 rate = percent + 1.0;

 return 0;
}

Memory

percent

b

age

rate

Used to store

7

J

1.07

So considering a simple main() programme

Memory Usage in C/C++ (10)

int main(void)
{
 int age;
 char b;
 double percent, rate;

 age = 7;
 b = ‘J’;
 percent = 1.07;
 rate = percent + 1.0;

 return 0;
}

Memory

percent

b

age

rate

Used to store

7

J

1.07

2.07

So considering a simple main() programme

Memory Usage in C/C++ (11)

int main(void)
{
 int age;
 char b;
 double percent, rate;

 age = 7;
 b = ‘J’;
 percent = 1.07;
 rate = percent + 1.0;

 return 0;
}

Memory Used to store

▪ So considering a simple main() programme

Memory Usage in C/C++ (12)

Now what happens when we start using functions?

▪Each time a function is called the same thing happens as in the
case of main

▪Variables are created as they are needed

▪And the memory released when the return statement is
executed

▪ In graphical form..

Memory Usage in C/C++ (12)

A ‘Frame’ is the term for the block of
memory used by a function

http://www.tenouk.com/ModuleZ.htmlint a (void); // Function prototypes
int b (void); // memory is not allocated until
int c (void); // functions are actually used

int a(void)
{
 b();
 c();
 return 0;
}

int b(void)
{
 return 0;
}

int c(void)
{
 return 0;
 }

int main(void)
{
 a();
 return 0;
}

http://www.tenouk.com/ModuleZ.html

Memory Usage in C/C++ (12)

http://www.tenouk.com/ModuleZ.htmlint a (void); // Function prototypes
int b (void); // memory is not allocated until
int c (void); // functions are actually used

int a(void)
{
 b();
 c();
 return 0;
}

int b(void)
{
 return 0;
}

int c(void)
{
 return 0;
 }

int main(void)
{
 a();
 return 0;
}

http://www.tenouk.com/ModuleZ.html

Memory Usage in C/C++ (13)

int a (void); // Function prototypes
int b (void); // memory is not allocated until
int c (void); // functions are actually used

int a(void)
{
 b();
 c();
 return 0;
}

int b(void)
{
 return 0;
}

int c(void)
{
 return 0;
 }

int main(void)
{
 a();
 return 0;
}

Memory Usage in C/C++ (14)

http://www.tenouk.com/ModuleZ.htmlint a (void); // Function prototypes
int b (void); // memory is not allocated until
int c (void); // functions are actually used

int a(void)
{
 b();
 c();
 return 0;
}

int b(void)
{
 return 0;
}

int c(void)
{
 return 0;
 }

int main(void)
{
 a();
 return 0;
}

http://www.tenouk.com/ModuleZ.html

Memory Usage in C/C++ (15)

http://www.tenouk.com/ModuleZ.htmlint a (void); // Function prototypes
int b (void); // memory is not allocated until
int c (void); // functions are actually used

int a(void)
{
 b();
 c();
 return 0;
}

int b(void)
{
 return 0;
}

int c(void)
{
 return 0;
 }

int main(void)
{
 a();
 return 0;
}

http://www.tenouk.com/ModuleZ.html

Memory Usage in C/C++ (17)

http://www.tenouk.com/ModuleZ.htmlint a (void); // Function prototypes
int b (void); // memory is not allocated until
int c (void); // functions are actually used

int a(void)
{
 b();
 c();
 return 0;
}

int b(void)
{
 return 0;
}

int c(void)
{
 return 0;
 }

int main(void)
{
 a();
 return 0;
}

http://www.tenouk.com/ModuleZ.html

Memory Usage in C/C++ (18)

int a (void); // Function prototypes
int b (void); // memory is not allocated until
int c (void); // functions are actually used

int a(void)
{
 b();
 c();
 return 0;
}

int b(void)
{
 return 0;
}

int c(void)
{
 return 0;
 }

int main(void)
{
 a();
 return 0;
}

Memory Usage in C/C++ (19)

http://www.tenouk.com/ModuleZ.htmlint a (void); // Function prototypes
int b (void); // memory is not allocated until
int c (void); // functions are actually used

int a(void)
{
 b();
 c();
 return 0;
}

int b(void)
{
 return 0;
}

int c(void)
{
 return 0;
 }

int main(void)
{
 a();
 return 0;
}

http://www.tenouk.com/ModuleZ.html

Memory Usage in C/C++ (20)

Let us consider a function that takes parameters:

▪ For example a ‘CalculateArea’ function defined as

double CalculateArea (double)

▪ When we call the function,

▪ Memory is allocated for variable(s) to hold the parameters that are being
passed

▪ The value(s) passed are COPIED into these newly created variable ready
for us to use them.

It is EXTREMELY important
that you remember this!

Memory Usage in C/C++ (21)

Let us consider this graphically...

Memory Usage in C/C++ (22)

First a reminder…

When a function is called the parameters passed
to it are COPIED into new variables local to the

function

(just in case you forgot ☺)

Memory Usage in C/C++ (23)

double CalculateArea (double);

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 area = CalculateArea (radius);
 return 0;

}

// And here is our function

double CalculateArea (double dRadius)
{
 double area;
 area = 3.14159265 * dRadius * dRadius;
 return (area);
}

Memory

Memory Usage in C/C++ (24)

double CalculateArea (double);

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 area = CalculateArea (radius);
 return 0;

}

// And here is our function

double CalculateArea (double dRadius)
{
 double area;
 area = 3.14159265 * dRadius * dRadius;
 return (area);
}

Memory Used to store

radius

area

1.0
main

Memory Usage in C/C++ (25)

double CalculateArea (double);

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 area = CalculateArea (radius);
 return 0;

}

// And here is our function

double CalculateArea (double dRadius)
{
 double area;
 area = 3.14159265 * dRadius * dRadius;
 return (area);
}

Memory Used to store

radius

area

1.0
main

Memory Usage in C/C++ (26)

64

double CalculateArea (double);

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 area = CalculateArea (radius);
 return 0;

}

// And here is our function

double CalculateArea (double dRadius)
{
 double area;
 area = 3.14159265 * dRadius * dRadius;
 return (area);
}

Memory Used to store

radius

area

1.0
main

1.0 dRadius
Calculate
Area

Memory Usage in C/C++ (27)

double CalculateArea (double);

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 area = CalculateArea (radius);
 return 0;

}

// And here is our function

double CalculateArea (double dRadius)
{
 double area;
 area = 3.14159265 * dRadius * dRadius;
 return (area);
}

Memory Used to store

radius

area

1.0
main

1.0 dRadius

area

Calculate
Area

Memory Usage in C/C++ (28)

66

double CalculateArea (double);

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 area = CalculateArea (radius);
 return 0;

}

// And here is our function

double CalculateArea (double dRadius)
{
 double area;
 area = 3.141592 * dRadius * dRadius;
 return (area);
}

Memory Used to store

radius

area

1.0
main

1.0 dRadius

area3.141592

Calculate
Area

Memory Usage in C/C++ (29)

67

double CalculateArea (double);

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 area = CalculateArea (radius);
 return 0;

}

// And here is our function

double CalculateArea (double dRadius)
{
 double area;
 area = 3.141592 * dRadius * dRadius;
 return (area);
}

Memory Used to store

radius

area

1.0
main

1.0 dRadius

area3.141592

Calculate
Area

3.141592

Memory Usage in C/C++ (30)

68

double CalculateArea (double);

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 area = CalculateArea (radius);
 return 0;

}

// And here is our function

double CalculateArea (double dRadius)
{
 double area;
 area = 3.14159265 * dRadius * dRadius;
 return (area);
}

Memory Used to store

radius

area

1.0
main

3.141592

Memory Usage in C/C++ (31)

double CalculateArea (double);

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 area = CalculateArea (radius);
 return 0;

}

// And here is our function

double CalculateArea (double dRadius)
{
 double area;
 area = 3.14159265 * dRadius * dRadius;
 return (area);
}

Memory

VSCode and main()

Any C program can only have one main() function

main() is the entry point for the program

A folder can have many files but only one of them can contain
a main() function

Why are global variables bad

Defined at the top, outside of any function and so available to ALL
functions

HOWEVER: Avoid them as they:

▪Hinder modularization

▪Can cause VERY ODD behavior

▪Are not even permitted in some languages (this is a good thing!)

Basically: THEY ARE EVIL!

Why are global variables bad: proof!

▪ This is the only time I will ever show code with a global variable in it!

#include <stdio.h>
#include <stdlib.h>

int y,k,ans; /* Define GLOBAL variables */

void NastyGlobalFunction (void) /* Define function */
{

ans = (y * k); /* y, k and ans are defined globally above */
return ;

}

int main(void)
{

y = 2; /* Set value of y */
k = 3; /* Set value of k */

NastyGlobalFunction(); /* call the function */

printf("%d multiplied by %d is %d " ,y ,k ,ans); /* Display values */
return 0;

}

LC12\global_ex1.c , LC12\global_ex2.c , LC12\global_ex3.c

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: Introduction
	Slide 3: Chapter 9
	Slide 4: Looping….
	Slide 5: Looping
	Slide 6: Pictorially: while and do…while
	Slide 7: While and do…while syntax
	Slide 8: Some examples in code
	Slide 9: for loops: For repeating a number of times
	Slide 10: for loops
	Slide 11: for loops – Test Condition
	Slide 12: for loops - Incrementing
	Slide 13: for loops - Format
	Slide 14: for loop: Some examples in code
	Slide 15: Chapter 10
	Slide 16: Functions: The building blocks of code (1)
	Slide 17: Functions: The building blocks of code (2)
	Slide 18: Functions (1)
	Slide 19: Functions (2)
	Slide 20: Function declarations
	Slide 21: Function prototypes (1)
	Slide 22: Function prototypes (2)
	Slide 23: Function prototypes (3)
	Slide 24: Functions: prototypes
	Slide 25: functions: Some examples in code
	Slide 26: void Functions
	Slide 27: Functions: A template
	Slide 28: Functions Flowchart
	Slide 29: Chapter 11
	Slide 30: Arrays (matrices to mathematicians!)
	Slide 31: Arrays: in practice (1)
	Slide 32: Arrays: in practice (2)
	Slide 33: Arrays: Some examples in code
	Slide 34: Chapter 12
	Slide 35: Variables in C/C++
	Slide 36: Variables & functions
	Slide 37: Scope of Variables
	Slide 38: Memory Usage in C/C++ (1)
	Slide 39: Memory Usage in C/C++ (2)
	Slide 40: Memory Usage in C/C++ (3)
	Slide 41: Memory Usage in C/C++ (4)
	Slide 42: Memory Usage in C/C++ (5)
	Slide 43: Memory Usage in C/C++ (6)
	Slide 44: Memory Usage in C/C++ (7)
	Slide 45: Memory Usage in C/C++ (8)
	Slide 46: Memory Usage in C/C++ (9)
	Slide 47: Memory Usage in C/C++ (10)
	Slide 48: Memory Usage in C/C++ (11)
	Slide 49: Memory Usage in C/C++ (12)
	Slide 50: Memory Usage in C/C++ (12)
	Slide 51: Memory Usage in C/C++ (12)
	Slide 52: Memory Usage in C/C++ (13)
	Slide 53: Memory Usage in C/C++ (14)
	Slide 54: Memory Usage in C/C++ (15)
	Slide 55: Memory Usage in C/C++ (17)
	Slide 56: Memory Usage in C/C++ (18)
	Slide 57: Memory Usage in C/C++ (19)
	Slide 58: Memory Usage in C/C++ (20)
	Slide 59: Memory Usage in C/C++ (21)
	Slide 60: Memory Usage in C/C++ (22)
	Slide 61: Memory Usage in C/C++ (23)
	Slide 62: Memory Usage in C/C++ (24)
	Slide 63: Memory Usage in C/C++ (25)
	Slide 64: Memory Usage in C/C++ (26)
	Slide 65: Memory Usage in C/C++ (27)
	Slide 66: Memory Usage in C/C++ (28)
	Slide 67: Memory Usage in C/C++ (29)
	Slide 68: Memory Usage in C/C++ (30)
	Slide 69: Memory Usage in C/C++ (31)
	Slide 70: VSCode and main()
	Slide 71: Why are global variables bad
	Slide 72: Why are global variables bad: proof!

